
Los Alamos
NATIONAL LABORATORY

LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (10/96)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

99-3959

User Documentation for defaultxs.cpp

Travis K. Gray

Documentation for a utility code for use with MCNP.

LA-UR-99-3959

Los Alamos
N A T I O N A L L A B O R A T O R Y

m e m o r a n d u m
Applied Theoretical & Computational
Physics Division
Code Integration Group, XCI
Los Alamos, New Mexico 87545

To/MS: Distribution
From/MS: T. Gray, XCI / MS F663

Phone/FAX: 7-9145 / 5-5553
Symbol: XCI:TKG-99-53(U)

Date: August 4, 1999

SUBJECT: User Documentation for defaultxs.cpp

The utility code defaultxs.cpp is used to generate a listing of the default cross-sections
used by MCNP1 for a specified xsdir file. An MCNP user specifies the data file he
wishes to use for a given nuclide by the ZAID entries on the material cards in the input
deck. The user may use a full ZAID specification such as 13027.50c to indicate the use
of the continuous-energy neutron data for 27Al referenced by the ending of ‘.50’. MCNP
also allows the use of a partial ZAID such as 13027 for 27Al. In this instance the user
will get the default cross-section for 13027 as specified by the user’s specific xsdir file.
To determine the default cross-section for 27Al, MCNP will search the xsdir file to find the
first occurrence of ‘13027’ appropriate for the particular problem (such as neutron data
for a mode n or mode np problem). As each user may have a different ZAID ordering in
their xsdir file, they will obtain different cross-sections when using the default option.
Use of default cross-sections is not recommended for this reason. Users should specify
the appropriate cross-section choice for their particular application. More information is
available in the MCNP manual on the xsdir file and default cross-sections in Appendix F
and Chapter 2 of the MCNP manual respectively.

1 General Information

defaultxs.cpp is designed to search through a user specified xsdir file and produce a
listing of default cross-sections. The code will interactively query the user whether to
generate default cross-section listing for an entire xsdir file, one specific data type in
that xsdir file, or a specific nuclide in that xsdir file. The code will also query the user
whether to output the information to the screen or to a user-specified output file.

2 Compiling the Source Code

defaultxs.cpp is coded in C++. The compiler used during development was the GNU
compiler available for most UNIX systems and free of charge (http://www.gnu.org).
There has been no attempt to compile defaultxs.cpp under Windows or the Macintosh
Operating Systems. The primary operating system used during development was

1 J. R. Briesmeister, Editor, “MCNP – A General Monte Carlo N-Particle Transport Code,” Los Alamos
National Laboratory Report, LA-12625-M (March 1997).

2 LA-UR-99-3959

Solaris. There are a few machine dependent aspects of the code associated with the
screen output, but these will not affect the results.

Example compile commands:
g++ defaultxs.cpp or c++ defaultxs.cpp to create a.out as the executable
g++ defaultxs.cpp –o defaultxs to create defaultxs as the executable

3 Input

As mentioned previously, the code will interactively query the user for the necessary
information to generate the default cross-section listing. There are three types of listings
that defaultxs.cpp can generate: (1) a listing containing default cross-sections for all
types of data contained in the xsdir file, (2) a listing for a specific type of data such as
continuous-energy neutron data, or (3) a listing for a specific nuclide. The types of data
MCNP can utilize are listed in Table 1. Based on the response, the code will query the
user for the specific type of data or the ZAID for options (2) or (3). When specifying a
ZAID, it must be in the form of ZZZAAA. For neutrons, deuterium with an atomic
number of 1 and a mass number of 2 has a ZAID of 1002. However, for photons, the
ZAID of Aluminum with an atomic number of 13 is 13000. For option (3) you are then
asked only to specify this ZAID and the data type. The types of data that can be
specified for both options (2) and (3) are given in Table 1.

Table 1: MCNP Data Types

Data Type Abbreviated Notation
continuous energy neutron tables c
discrete energy tables d
dosimetry tables y
S(a,b) thermal tables t
continuous energy photon tables p
continuous energy electron tables e
multi-group neutron tables m
multi-group photon tables g

The code itself only searches on the abbreviated notation. If you select a data type
denoted by ‘k’, which does not exist in the file you specified, then the code simply
returns that no match was found. However, if the data exists in the xsdir, it does not
matter if the type is not listed in the above table. For example, in the future MCNP will
have the capability to use continuous-energy proton tables (h) or photonuclear tables. If
the data is in the xsdir file, the code will generate a listing for the indicated data type.
However, if the data type is not listed in the above table, or is not photonuclear or proton
data, the output of that specific data type will not be sorted according to data type. This
will only be obvious if there exists multiple alien data types in the xsdir file that the user
searches.

3 LA-UR-99-3959

Next, the code queries the user for the xsdir file to search. The user can specify the
xsdir file in their CURRENT WORKING DIRECTORY, or the full path and filename for a
xsdir file. Without the full path and filename, UNIX believes the file is in the root
directory. Another caveat is to not use the tilde (~) convention from UNIX when
specifying the path. This is not recognized by the code and will lead to an infinite loop
with no file to read. An example is included in the sample session in section 6.

4 Search

The search routine will gather the appropriate ZAID’s and data types from the
ZZZAAA.lib at the beginning of each entry. It will compare new ZAID’s and data types
to those already noted as being the first occurrence of that ZAID and data type. If this
particular combination has not occurred as yet in the program execution, then it will be
assigned as a default data library and be outputted at the program execution end. It
should also be noted, if you’re using the xsdir file that is provided with MCNP, or any file
of similar length, a total search of the file could take up to 10 minutes on a Sun Ultra 10.

5 Output

After the search if completed, the code queries the user for the type of output to
generate. The user may specify to write the output to the screen or to a file. If the user
selects the option to write to an output file, the code will then query the user for the
filename. The strictness of giving a pathname is not necessary here, as the code will
create the file in the program’s current working directory. The same format will be used
either when output is sent to the screen or to a file. However, the screen output will
include a date and time of the program execution.

The sorting done by the program utilizes the Unix shell commands ‘grep’ and ‘sort’. The
output is grouped only for the data types listed in Table 1 as well as photonuclear and
proton data. All other data types are considered foreign to the code and will only be
sorted numerically by ZAID in the output.

6 Example Session

keanu|tgray|1> g++ defaultxs.cpp
keanu|tgray|2> ./a.out

(Screen Cleared)

Default Cross Section Values in the XSDIR of MCNP

This program is designed to search the user's xsdir file used by MCNP
and find out the cross section data library used for each isotope.

4 LA-UR-99-3959

This can be done either by the user specifying an XSDIR file to search
or allowing the program to open the XSDIR file in the user's
CURRENT WORKING DIRECTORY

The user will also have the options of searching the entire file
for every isotope, search for a specific data type in the file, or
just a single isotope and have the option of outputting the data
either to a file or to the screen.

Press return to continue. . .

(Screen Cleared)

Do you wish to :
1. Search the entire XSDIR file
2. Search the xsdir file for a specific data type
3. Search only for a specific isotope / ZAID in the XSDIR file

What is your choice (1/2/3)? 1

What XSDIR file do you want to search???
1. Enter the pathname to your file (path and filename)
2. Select the XSDIR file in your CURRENT WORKING DIRECTORY

What option do you wish to choose (1/2)? 1

What is the entire path and filename for your XSDIR file? ./xsdat1

This could take several minutes. . .

Do wish you wish to output the data to the screen or a file ???
1. file output
2. screen output

What is your choice? 2

Fri Jul 9 11:50:34 MDT 1999
ZAID Data Library

1001.60c endf601
1002.55c rmccs1
2004.42c endl921
6000.60c endf601
6012.21c 100xs1
23000.51c rmccs1
1001.50d drmccs1
5011.56d newxsd1

5 LA-UR-99-3959

Do you wish to search for another Isotope or XSDIR file (yes/no)? no

End of Program Execution
keanu|tgray|3>

7 Use of an Input Deck

The user may wish to use an input deck to enter the options for the code. This will also
facilitate multiple searches where the user will not be forced to type numerous options
and ZAIDs. The format for an input deck would be as follows, if the deck is to be named
xsinput and following the same input as in the example session (NOTE: text in bold
would actually appear in the input deck while text in italics are explanations of the items
in bold).

keanu|tgray|4>g++ defaultxs.cpp
keanu|tgray|5>less xsinput
A new line must be the first item in the deck to accommodate the “Press Return to Continue”.
1 First Option (search entire xsdir file.)
1 Second Option (Specify a xsdir)
./xsdat1 Path and filename for specifying a xsdir file
2 Third Option (screen output)
no No further files or ZAID’s to be processed

keanu|tgray|6>./a.out < xsinput

If a user wanted to run the code for multiple ZAID’s, the input deck would look at
follows:

A new line must be the first item in the deck to accommodate the “Press Return to Continue”.
1 First Option (search entire xsdir file.)
1 Second Option (Specify a xsdir)
./xsdat1 Path and filename for specifying a xsdir file
2 Third Option (screen output)
yes Further files to be processed
2 First Option(search xsdir for one data type)
2 Second Otion (Use the default xsdir file)
c Data type to search default xsdir file for
1 Third Option (file output)
cxsdir File to Output data to
yes Further files to be processed
3 First Option (Specify one ZAID)
1 Second Option (Specify a xsdir)
./xstest Path and filename for specifying a xsdir file
1001 Search xstest for H-1
d Search for the first H-1 with the d data type

6 LA-UR-99-3959

1 Third Option (file output)
h1d File to Output data to
no No further files to process

It should be stated that while these examples used screen output; sending the output to
the screen is not recommended when using an input deck. The output scrolls by very
quickly and often gets run together if the user tries to scroll back up. Also, when the
output is sent to a file, the file is created each time. So, if the user tries to send all the
output from multiple processes to one file, each successive process will over write the
previous output. The easiest solution is to use different files and concatenate them if
necessary.

